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Abstract

A model-based LQR method for controlling vibrations in cylindrical shells is presented.
Surface-mounted piezoceramic patches are employed as actuators which leads to unbounded
control input operators. Modi�ed Donnell-Mushtari shell equations incorporating strong or
Kelvin-Voigt damping are used to model the system. The model is then abstractly formulated
in terms of sesquilinear forms. This provides a framework amenable for proving model well-
posedness and convergence of LQR gains using analytic semigroup results combined with
LQR theory for unbounded input operators. Finally, numerical examples demonstrating the
e�ectiveness of the method are presented.
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1 Introduction

The use of shell models to describe structural dynamics is pervasive in applications ranging
from noise reduction in aircraft to ow control in exible pipes. While general shell equations
can be used in a variety of geometries, they all share the property that component displace-
ments are coupled due to the geometry. This leads to signi�cant challenges when developing
appropriate models and approximation techniques, and constructing e�ective controllers.

In this paper, we consider cylindrical shells due to their prevalence in applications. Con-
trol is provided by piezoceramic patches bonded in pairs to the surface of the shell. These
transducers provide signi�cant actuating capabilities due to the piezoelectric e�ect in which
input voltages generate strains in the patches. Utilization of the converse piezoelectric e�ect
(strains produce voltages) also allows the patches to be employed as sensors. When combined
with their light weight, space e�ciency and reasonable cost, these properties make the patches
highly e�ective control elements in a variety of applications. From a mathematical perspective,
the use of surface-mounted piezoceramic patches leads to unbounded control input operators.

Experimental work has already demonstrated the potential for success when employing the
patches as actuators in applications involving cylindrical shells [8, 13]. However, these initial
investigations have not, in general, utilized the full potential of the patches due to limitations
in hardware, models, approximation techniques and control laws. For example, a common
means of calculating control gains is through the use of modal expansions [10]. However,
closed form expressions for the modes can be determined only for a limited set of models with
severely restrictive boundary conditions. The use of incorrect modes when calculating control
gains can lead to loss of control authority and possible controller instabilities. Hence for most
physical shell models, modes must �rst be accurately approximated if modal methods are
employed for control design.

In this paper, we present a model-based method for controlling shell vibrations. For sim-
plicity, the Donnell-Mushtari shells equations with Kelvin-Voigt damping are used as a model
(the assumption of strong or Kelvin-Voigt damping is reasonable and typical for many shell
materials such as aluminum). The methods are general, however, and can be applied to
higher-order models (e.g., Byrne-Fl�ugge-Lur'ye model) if the application warrants. A general
Galerkin method based on splines is then used to discretize the in�nite dimensional system (see
[7] for details regarding the numerical method and a comparison with �nite element methods
for shells). Through the choice of basis, the method is constructed to be exible with regard to
the boundary conditions and material nonhomogeneities which arise in typical applications.
Furthermore, development of the model and approximation method in terms of a weak or
energy formulation facilitates consideration of the distributional derivatives which arise when
including patch contributions in the model. This provides a setting suitable for direct simu-
lations and control design as well as computation of frequencies and modes for the shell.

The model and approximate system are then employed in an LQR full state feedback
theory to obtain feedback gains and, ultimately, controlling voltages to the patches. While full
state measurements are not available using current instrumentation, and hence the techniques
cannot directly be implemented in experiments, they provide an important �rst step in the
design of e�ective compensators based on state estimates calculated using a limited number of
observations (see [5]). The consideration of the LQR performance also illustrates properties of
the system and model-based control techniques and facilitates investigations regarding issues
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such as patch number and con�guration. Finally, the consideration of the problem provides a
step toward the development of model-based controllers for fully coupled structural acoustic
and uid/structure systems involving cylindrical shells.

The strong and weak forms of the Donnell-Mushtari shells equations are outlined in Sec-
tion 2. In presenting this model, care is taken to include both passive (material) and active
(actuator) contributions due to the patches. An abstract form of the model, based on sesquilin-
ear forms, is also presented. This provides a natural setting to prove model well-posedness and
convergence properties of the LQR control law. LQR full state feedback laws for systems with
no exogenous force or forces which are periodic in time are presented in Section 3. In the former
case, convergence of the approximate suboptimal gains to the optimal gains for the in�nite di-
mensional system is proven using analytic semigroup theory in combination with LQR results
for unbounded control input operators. A Fourier-Galerkin method for approximating the sys-
tem dynamics is outlined in Section 4, and the e�ectiveness of the LQR method for periodic
forces is demonstrated through a numerical example in Section 5. This example demonstrates
that through the use of the model-based methodology with general Galerkin approximations,
signi�cant attenuation in shell vibrations can be obtained using piezoceramic patches.

2 PDE Model

The system under consideration consists of a thin cylindrical shell with surface-mounted piezo-
ceramic patches. It is assumed that the patches are mounted in pairs with edges aligned with
the circumferential and longitudinal axes of the shell. The edges of the shell are taken to be
�xed in accordance with common experimental clamping techniques.

To specify the geometry for the corresponding model, we consider the longitudinal direction
to be aligned along the x-axis as depicted in Figure 1. The displacements of the middle
surface in the longitudinal, circumferential and transverse directions are denoted by u, v and
w, respectively while the length, thickness and radius of the shell are denoted by `; h;R. The
region occupied by the middle surface is denoted by �0. Finally, the shell is assumed to have
mass density �, Young's modulus E, Poisson ratio �, Kelvin-Voigt damping coe�cient cD and
air damping coe�cient �.

thi    patch
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Figure 1. Thin cylindrical shell with surface mounted piezoceramic patches.
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Actuator and/or sensor capabilities are provided by s pairs of surface-mounted piezoce-
ramic patches. It is assumed that all the patches have thickness hpe, Young's modulus Epe,
Poisson ratio �pe and Kelvin-Voigt damping coe�cient cDpe

. Furthermore, it is assumed that
the glue bonding layer provides negligible contribution to the structural dynamics (the reader
is referred to [3, 5] for details concerning the incorporation of di�ering patch characteristics
and bonding layers in the ensuing models). The region covered by the ith patch pair, with
edges at x1i; x2i; �1i; �2i, is delineated by the characteristic function

�pei(x; �) =

(
1 ; x1i � x � x2i ; �1i � � � �2i

0 ; otherwise :

The indicator function Spei(x; �) � S1;2(x)Ŝ1;2(�) ; where

S1;2(x) =

8>><>>:
1 ; x < (x1i + x2i)=2

0 ; x = (x1i + x2i)=2

�1 ; x > (x1i + x2i)=2

; Ŝ1;2(�) =

8>><>>:
1 ; � < (�1i + �2i)=2

0 ; � = (�1i + �2i)=2

�1 ; � > (�1i + �2i)=2

;

delineates the sense of the forces generated by the ith pair. The symmetry of the function
arises from the property that for homogeneous patches having uniform thickness, equal but
opposite strains are generated about the point

�
�xi; ��i

�
= ((x1i + x2i)=2; (�1i + �2i)=2).

2.1 Strong Form of the Modeling Equation

We consider here the modi�ed Donnell-Mushtari equations
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(2.1)

as a model for the thin shell dynamics. As detailed in [3, 5, 9], these equations are obtained
through force and moment balancing with only low order terms retained. Here Mx;M�;M�x

and Mx� are internal moments while Nx; N�; N�x and Nx� denote internal force resultants.
External surface forces are denoted by q̂x; q̂�; q̂n whereas the external resultants (line moments
and forces) generated by the ith patch pair are designated by (Mx)pei ; (M�)pei ; (Nx)pei ; (N�)pei.

Expressions for the internal force and moment resultants are derived under the assumption
that stress is proportional to a linear combination of strain and strain rate. This yields a
model which incorporates Kelvin-Voigt or strong internal damping. As detailed in [3, 5], the
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resultants Nx; Nx�; N�x;Mx;Mx�;M�x derived under this assumption are

Nx =
Eh

1� �2
("x + �"�) +

sX
i=1

2Epehpe

1� �2pe
("x + �pe"�)�pei(x; �)

+
cDh

1� �2
( _"x + � _"�) +

sX
i=1
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(2.2)

where the constant a3 � (h=2+ hpe)3�h3=8 results from integration through the thickness of
the patch. Expressions for the resultants N� andM� can be obtained by replacing "x; "�; �x; ��
in the expressions for Nx and Mx by "�; "x; ��; �x, respectively. The midsurface strains and
changes in curvature for the Donnell-Mushtari model are
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Note that for the undamped shell which is devoid of patches, the resultant equations (2.2)
reduce to the classical Donnell-Mushtari expressions
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(e.g., see [9]).
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To characterize the external or active patch contributions, it is typical to start with the
assumption that the strains generated by a patch are proportional to the applied voltage
[3]. Since di�ering voltages can be applied to the outer and inner patches in the pair, we
will di�erentiate between the two with Vi1(t) and Vi2(t) used to denote the voltages to the
outer and inner patches in the ith pair, respectively. The proportionality constant relating
the generated strain to the input voltage is designated by d31. As detailed in [3], the total
external moments and forces generated by the patches are

(Mx)pei =
�Epe

1 � �pe
�
d31

hpe
�pei(x; �)

��
a2

2
+
a3

3R

�
Vi1 �

�
a2

2
�
a3

3R

�
Vi2

�

(M�)pei =
�Epe

1� �pe
�
d31a2

2hpe
�pei(x; �)[Vi1 � Vi2]

(Nx)pei =
�Epe

1 � �pe
�
d31

hpe
�pei(x; �)Spei(x; �)

��
hpe +

a2

2R

�
Vi1 +

�
hpe �

a2

2R

�
Vi2

�

(N�)pei =
�Epe

1� �pe
d31�pei(x; �)Spei(x; �)[Vi1 � Vi2]

(2.4)

where a2 = (h=2 + hpe)2 � h2=4 and a3 = (h=2 + hpe)3 � h3=8. When substituted into (2.1),
the expressions (2.4) provide the input from the patches when voltages are applied.

Finally, the �xed-edge boundary conditions

u = v = w =
dw

@x
= 0 ; x = 0; ` (2.5)

are used to model the end behavior of the shell. These boundary conditions are appropriate
for experimental setups in which heavy endcaps prevent edge movement. Note that alternative
boundary conditions such as simply supported or \almost �xed" (see [4]) can be employed if
edge movement is suspected.

2.2 Weak Form of Modeling Equations

The strong form (2.1) of the modeling equations requires �rst and second derivatives of the
moment and force resultants. As noted in (2.2) and (2.4), both the internal and external
moment and force resultants are discontinuous due to the piezoceramic patches. Hence formal
analysis and approximation using the strong form of the modeling equations lead to di�culties
due to di�erentiation of Dirac distributions.

To alleviate these di�culties, it is advantageous to consider a weak form of the modeling
equations which can be derived from Hamilton's principle (energy considerations). While
equivalent to the strong form under suitable smoothness assumptions, the weak form provides
a more natural setting for analysis and approximation.

The state variables for the problem in second-order form are taken to be y = (u; v; w) in
the state space H = L2(�0)�L2(�0)�L2(�0). For the �xed-edge boundary conditions (2.5),
the space of test functions is taken to be V = H1

0 (�0)�H1
0 (�0)�H2

0 (�0) where

H1
0 (�0) = f� 2 H1(�0) j �(0; �) = �(`; �) = 0g

H2
0 (�0) = f� 2 H2(�0) j �(0; �) = �x(0; �) = �(`; �) = �x(`; �) = 0g :
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For�=( u; v; w) and 	 = (�1; �2; �3), the H and V inner products are taken to be

h�;	iH =

Z
�0

�hu�1d +

Z
�0

�hv�2d +

Z
�0

�hw�3d

and
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where "x; "�; "x�; �x; ��; � are de�ned in (2.3) and d = Rd�dx. The dependence of the inner
product on the Young's moduli is explicitly included in the de�nition to provide a notation
for de�ning analogous damping expressions later in this work.

The weak form of (2.1), as derived in [5] from energy principles, is given byZ
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(2.6)
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for all 	 = (�1; �2; �3) 2 V . A comparison between (2.6) and (2.1) illustrates that in the
weak form, derivatives are transferred from the discontinuous resultants onto suitably smooth
test functions. This alleviates the di�culties associated with the discontinuities and reduces
smoothness requirements on approximate solutions.

2.3 Abstract Formulation

To de�ne appropriate sesquilinear forms, we group sti�ness components separately from damp-
ing components. To this end, we de�ne �i : V � V ! Cl ; i = 1; 2 by

�1(�;	) = h(E;Epe)�;	iV

�2(�;	) =
D
(cD; cDpe

)�;	
E
V
+
Z
�0

�w�3d :
(2.7)

Note that h(cD; cDpe
)�;	iV di�ers from h(E;Epe)�;	iV only in that Young's moduli are

replaced by Kelvin-Voigt damping coe�cients. It can be directly veri�ed that the sti�ness
form �1 satis�es

(H1) j�1(�;	)j � c1j�jV j	jV ; for some c1 2 lR (Bounded)

(H2) Re�1(�;�) � c2j�j
2
V ; for some c2 > 0 (V -Elliptic)

(H3) �1(�;	) = �1(	;�) (Symmetric)

for all �;	 2 V . Moreover, the damping term �2 satis�es

(H4) j�2(�;	)j � c3j�jV j	jV ; for some c3 2 lR (Bounded)

(H5) Re�2(�;�) � c4j�j
2
V ; for some c4 > 0 (V -Elliptic) :

Remark 1. The symmetry of �1 is dependent upon the choice of shell model and ultimately
reects the Maxwell-Betti reciprocity theorem. While the Donnell-Mushtari model yields a
symmetric sesquilinear form �1, other models such as the Timoshenko shell model will not
yield a symmetric form.

To represent control contributions, let U = lRs denote the Hilbert space of control inputs
and de�ne B 2 L(U; V �) by

hBu(t);	iV �;V =
Z
�0

sX
i=1

(
(Nx)pei

@�1

@x
+

1

R
(N�)pei

@�2

@�

�(Mx)pei
@2�3

@x2
�

1

R2
(M�)pei

@2�3

@�2

)
d

for 	 2 V . Here h�; �iV �;V denotes the usual duality product. Finally, with the de�nition
~g = (1=�h)[q̂x; q̂�; q̂n], we can write the weak form (2.6) in the abstract variational form

h�y(t);	iV �;V + �2( _y(t);	) + �1(y(t);	) = hBu(t) + ~g(t);	iV �;V : (2.8)
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To pose the problem in a �rst-order form amenable for control applications, we de�ne the
product spaces H = V �H and V = V � V with the norms

j(�1; �2)j
2
H = j�1j

2
V + j�2j

2
H

j(�1; �2)j
2
V = j�1j

2
V + j�2j

2
V :

The state is taken to be z(t) = (y(t); _y(t)) 2 H. Finally, the product space forcing terms are
formulated as

g(t) =

"
0
~g(t)

#
; Bu(t) =

"
0

Bu(t)

#
: (2.9)

The weak form (2.8) can then be rewritten as

h _z(t);�i
V�;V + �(z(t);�) = hBu(t) + g(t);�i

V�;V for � 2 V

z(0) = z0 = (y0; y1)
(2.10)

where � : V � V ! Cl is given by

�(�; ) = �h�2;  1iV + �1(�1;  2) + �2(�2;  2)

for � = (�1; �2);  = ( 1;  2) 2 V. As proven in [5, page 109], � is V continuous and for
� > 0, �(�; �) + � h�; �i

H
is V-elliptic. From the continuity of �, it follows that one can de�ne

an operator eA 2 L(V;V�) by �(�;�) = h eA�;�iV�;V .
To obtain a strong form of the �rst-order system which is appropriate for control purposes,

consider the system operator

domA = f(�1; �2) 2 Hj�2 2 V;A1�1 +A2�2 2 Hg

A =

"
0 I

�A1 �A2

#
(2.11)

with A1; A2 2 L(V; V �) de�ned by

hAi�1; �2iV �;V = �i(�1; �2) ; i = 1; 2 :

It should be notated that A is the negative of the restriction to domA of eA 2 L(V;V�) so
that �(�;�) = h�A�;�i

H
for � 2 domA;� 2 V.

A strong form of the abstract system model is then given by

_z(t) = Az(t) + Bu(t) + g(t) in V� = V � V �

z(0) = z0 :
(2.12)

The rigorous equivalence of solutions is established through the following theorems.

Theorem 1. Under Hypotheses (H1)-(H5) on �1 and �2, eA generates an analytic semigroup
T (t) on V;H and V�. In terms of this semigroup, the representation

z(t) = T (t)z0 +
Z t

0
T (t� s)[Bu(s) + g(s)]ds (2.13)

de�nes a mild solution to (2.12) for z0 2 V� and Bu + g 2 L2((0; T );V�). Furthermore, this
semigroup is (uniformly) exponentially stable on V;H and V�.
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Theorem 2. Let zsg denote the semigroup solution to (2.12) given by (2.13) and let vvar denote
the weak solution to (2.8). Under hypotheses (H1)-(H5), it follows that zsg(z0;F) = zvar(z0;F)
for z0 2 H and F � Bu+ g 2 L2((0; T );V�).

Following the convention of [14], we will use the same notation for the semigroups de�ned
on V;H and V� since each semigroup is an extension or restriction of the others. Note that
domA de�ned in (2.11) is actually domH

eA, the domain of eA as a generator of T (t) in H. As
detailed in Lemma 3.6.1 and Theorem 3.6.1 of [14] (see also Section IV.6 of [12] and Chapter 2,
Theorem 5.2 of [11]), the property that eA generates an analytic semigroup on V;H and V�

results from the continuity and V-ellipticity of �. The exponential stability of T (t) on H
for second-order systems with strong damping is demonstrated in [1] while the exponential
stability of T (t) on V and V� in this setting is proven in Lemma 3.3 of [2]. Finally, Theorem 2
is a reformulation of Theorem 4.14 of [5] and details can be found therein.

3 LQR Control Problem

In the last section, the PDE system modeling the dynamics of the thin shell with surface-
mounted piezoceramic actuators was written in the abstract �rst-order form

_z(t) = Az(t) + Bu(t) + g(t)

z(0) = z0

in V�. In this section, LQR control results for both the original in�nite dimensional problem
and approximating �nite dimensional problems will be discussed. Two cases will be consid-
ered, namely when g � 0 and g is periodic in time. In both cases, it is assumed that state
observations in an observation space Y have the form

zob(t) = Cz(t) (3.1)

where C 2 L(H; Y ) is bounded. The assumption that C is bounded is made to simplify the
exposition and the reader is referred to [2] for arguments pertaining to the case of unbounded
observation operators.

3.1 No Exogenous Input

For the case in which g � 0, the in�nite horizon problem concerns the determination of a
control u which minimizes the quadratic cost functional

J(u; z0) =
Z 1
0

n
jCz(t)j2Y + jR1=2u(t)j2U

o
dt (3.2)

subject to
_z(t) = Az(t) + Bu(t)

z(0) = z0 :

The positive, self-adjoint operator R is used to weight various components of the control.
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As detailed in [2, 5], if (A;B) is stabilizable and (A; C) is detectable, then the optimal
control minimizing (3.2) is given by

�u(t) = �R�1B���z(t)

where � solves the algebraic Riccati equation

(A��+�A��BR�1B��+ C�C)z = 0 for all z 2 V

and �z(t) = S(t)z0. Here S(t) is the closed loop semigroup generated by A� BR�1B��.
For implementation purposes, it is necessary to de�ne an approximate system and controls,

and determine convergence criteria for these approximate controls when fed back into the
in�nite dimensional system. The approximations are considered in a Galerkin framework
with trajectories evolving in the �nite dimensional subspaces VN � V � H. It is assumed
that the approximation method satis�es the standard convergence conditions

(H1N) For any z 2 V, there exists a sequence ~zN 2 VN such that jz� ~zN jV ! 0 as N !1.

The �nite dimensional operators and approximating system are then determined as follows.
The operator AN : VN!VN which approximates A is de�ned by restricting � to VN � VN ;
this yields D

�AN�;�
E
H
= �(�;�) for all �;� 2 VN : (3.3)

For each N , the C0 semigroup on VN which is generated by AN is denoted by T N(t). The
control operator is approximated by BN 2 L(U;VN) given byD

BNu;�
E
H
= hu;B��i

H
for all u 2 U ; � 2 VN (3.4)

while CN denotes the restriction of the observation operator C to VN . Finally, we let PN

denote the usual orthogonal projection of H onto VN which by de�nition satis�es

(i) PN� 2 VN for � 2 H

(ii)
D
PN���;�

E
H
= 0 for all � 2 VN :

This projection can be extended to PN 2 L(V�;VN) by replacing theH-inner product h�;�i
H

by the duality product h�;�i
V�;V and considering � 2 V�.

The approximate problem corresponding to (2.10) with g � 0 can then be formulated as

d

dt

D
zN(t);�

E
H
+ �(zN(t);�) =

D
BNu(t);�

E
H

for all � 2 VN

zN (0) = PNz0 :

This has the solution

zN(t) = T N (t)PNz0 +
Z t

0
T N (t� s)PNBNu(s)ds :

10



The following theorems taken from [2, 5] can be used to establish the convergence of the
approximate gains to their in�nite dimensional counterparts for certain classes of shell models
(see speci�cally Theorem 7.10 and Lemma 7.13 of [5]).

Theorem 3. Assume that the injection i : V ,! H is compact. Moreover, suppose that the
damping sesquilinear form can be decomposed as �2 = ��1 + �̂2, for some � > 0, where the
continuous sesquilinear form �̂2 satis�es for some � 2 lR

Re �̂2(�; �) � �
�

2
j�j2V � �j�j2H for all � 2 V :

Finally, suppose that the operator A�11
bA2, where bA2 2 L(V; V �) is de�ned by

D bA2�; �
E
V �;V

=

�̂2(�; �), is compact on V .
If for some ! 2 lR and M � 1, T (t) satis�es

jT (t)jL(H) �Me!t ; t � 0 ;

then for any " > 0 there exists an integer N" such that for N � N",

jT N (t)PN jL(H) � fMe(!+")t ; t � 0

for some constant fM > 0 independent of N .

Theorem 4. Assume that the injection i : V ,! H is compact. Let the sesquilinear form �

associated with the �rst-order system (2.10) be continuous and V-elliptic. Assume that the
operators A;B; C of (2.11), (2.9), (3.1), respectively, satisfy: (A;B) is stabilizable and (A; C)
is detectable where B 2 L(U;V�) is unbounded and C 2 L(H; Y ) is bounded. Consider an
approximation method which satis�es (H1N). Finally, suppose that for �xed N0 and N > N0,
the pair (AN ;BN) is uniformly stabilizable and (AN ; CN ) is uniformly detectable.

Then for N su�ciently large, there exists a unique nonnegative self-adjoint solution �N 2
L(V�;V) to the N th approximate algebraic Riccati equation

AN�

�N +�NAN ��NBNR�1BN�

�N + CN
�

CN = 0

in VN . There also exist constants M3 � 1 and !3 > 0 independent of N such that SN (t) =

e(A
N�BNR�1BN

�

�N )t satis�es ���SN(t)
���
VN

�M3e
�!3t ; t > 0 :

Moreover, the convergence of the Riccati and control operators

�NPNz
s
! �z in V for every z 2 V����BN�

�NPN � B��
���
L(H;U)

!0 ;

as N!1, is obtained.
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Example 1. We consider in this example a shell with constant parameters �;E; �; cD. Such a
case would arise if modeling a homogeneous shell or a shell in which the variance of material
properties across regions with actuators is negligible. The sesquilinear forms for this model
are speci�ed in (2.7). Due to the constant coe�cients, �2 can be written as �2 = ��1 + �̂2
where � = cD

E
and �̂2(�;	) = �

R
�0
w�3d. It follows immediately that

Re�̂2(�; �) = �

Z
�0
�2d � �

�

2
j�j2V

for all � 2 V . The boundedness of the operator bA2 generated by �̂2 follows directly from
the boundedness of �̂2. Furthermore, it is noted that A�11 2 L(V �; V ) can be written as an
operator on V ! V by A�11 = A�11 i�i where the injections i : V ,! H; i� : H ,! V � are
compact. Thus A�11 is compact on V which implies that A�11

bA2 is compact on V since it is
formed from the product of compact and bounded linear operators. Finally, the exponential
stability of T (t), the stabilizability of (A;B) and the detectability of (A;B) are guaranteed by
Theorem 1. The hypotheses of Theorem 3 are then satis�ed for this system and one obtains
uniform bounds on the approximating semigroups. The convergence of the Riccati and control
operators is then obtained from Theorem 4.

3.2 Periodic Exogenous Input

A reasonable assumption in many mechanical systems is that g is periodic in time with period
� . The system to be controlled in this case is

_z(t) = Az(t) + Bu(t) + g(t)

z(0) = z(� )
(3.5)

and an appropriate quadratic functional to be minimized is

J� (u) =
1

2

Z �

0
fjCz(t)j2Y + jR1=2u(t)j2Ug dt :

Note that the periodic exogenous term g can be used to model inputs such as noise gener-
ated by rotating engine components (e.g., propellers or turbines) or periodic electromagnetic
disturbances.

To guarantee the existence of a unique Riccati solution and control for the system (3.5),
it is assumed that (A;B) is stabilizable and (A; C) is detectable. Furthermore, it is assumed
that g 2 L2(0; � ;H) and that B is bounded. Under these conditions, it is veri�ed in [6] that
the Riccati equation

A��+�A+�BR�1B��+ C�C = 0

has a unique solution. Furthermore, if r denotes the � -periodic solution of the adjoint or
tracking equation

_r(t) = �[A� BR�1B��]�r(t) + �g(t)

r(0) = r(� )

12



and �z is the closed loop solution of

_z(t) = [A� BR�1B��]�z(t)� BR�1B�r(t) + g(t)

�z(0) = �z(� ) ;

then the optimal control is given by

�u(t) = �R�1B�[��z(t)� r(t)] : (3.6)

The LQR theory for this case is less complete than that for systems with no exogenous
input and is currently limited to bounded control inputs B. The synthesis of the theory for
unbounded input operators and periodic exogenous forces is currently under investigation.
The e�ectiveness of the method is illustrated in the �nal example of this work.

4 Approximation Method

A Galerkin method was used to approximate the solutions u; v; w to the system (2.6), or
equivalently, (2.10). The approximating subspaces were taken of the form VN = spanfBukg�
spanfBvkg� spanfBwkg where Buk ;Bvk ;Bwk denote bases for the u; v and w displacements,
respectively. To exploit the tensor nature of the shell domain �0 and periodicity in �, the bases
were constructed with Fourier components in � and cubic splines in x (see [7] for details). The
approximate displacements were then given by the expansions

uN (t; �; x) =
NuX
k=1

uk(t)Buk(�; x)

vN(t; �; x) =
NvX
k=1

vk(t)Bvk(�; x)

wN (t; �; x) =
NwX
k=1

wk(t)Bwk(�; x) :

To obtain a �nite dimensional system with matrices corresponding to the �nite dimensional
operators in (3.3) and (3.4), the sesquilinear forms �1 and �2 were restricted to VN . This yields
the matrix system"

KN
E 0

0 MN

#24 _#N (t)

�#N (t)

35 =

"
0 KN

E

�KN
E �KN

cD

# 24 #N (t)

_#N (t)

35+

24 0

~BN

35 [u(t)] + " 0

~gN (t)

#

"
KN

E 0

0 MN

#24 #N (0)

_#N (0)

35 =

"
yN1

yN2

#

where #N (t) = [u1(t); � � � ; uNu; v1(t); � � � ; vNv; w1(t); � � � ; wNw]
T contains theN = Nu+Nv+Nw

generalized Fourier coe�cients. The s patch inputs are contained in u(t) = [u1(t); � � � ; us(t)]T .
The reader is referred to [7] for details concerning the construction of the mass, sti�ness and
damping matricesMN ;KN

E ;K
N
cD
, the inputs ~BN ; ~gN (t) and the initial conditions yN1 ; y

N
2 .
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Multiplication by the inverted mass matrix yields the Cauchy equation

_zN(t) = ANzN (t) +BNu(t) + gN (t)

zN(0) = zN0 ;
(4.1)

where zN 2 R2N = [#N (t); _#N (t)]T . This system forms the constraint equations used in the
�nite dimensional LQR theory discussed in Section 3.

5 Numerical Example

We consider here an exogenous force g which is periodic in time with period � = 1000�
(500 Hz). The distribution of the force was taken to be binormal in the transverse and
longitudinal directions and centered at (x; �) = (`=2; 0) and (x; �) = (`=2; �) as depicted in
Figure 2. The magnitude of the transverse component q̂n was one hundred times that of the
longitudinal component q̂x so as to model an input consisting primarily of acoustic sources
located adjacent to (`=2; 0) and (`=2; �).

Six pairs of piezoceramic patches of length 1 cm and radial measure �=3 were employed
as actuators. The locations and material properties of the patches along with the dimensions
and physical parameters for the shell are summarized in Table 1.

To accommodate the periodic exogenous force g, control inputs to the twelve patches were
computed using the feedback law (3.6). Note that in this formulation, independent voltages
are determined for the individual patches. This provides the capability of generating both
inplane forces and bending moments in the regions covered by the patches so that longitudinal,
circumferential and transverse vibrations can be controlled.

Time histories of the uncontrolled and controlled shell displacements at the point p1 =
(3`=4; �=32), depicted in Figure 2, are plotted in Figure 3. The open loop trajectories exhibit
both a transient response settling into steady state and a beat phenomenon due to the close
proximity of the driving frequency and natural frequencies for the shell. At this observation

L2

1Lθ = π6 1

θ - Distribution
of Normal Force

x - Distribution of Normal Force

p

Figure 2. Distribution of normal forcing function at � = 0 and � = �. Observation lines
L1 = f(x; �)j0 � x � `; � = �=6g, L2 = f(x; �)jx = 3`=4; 0 � � � 2�g and observation point
p1 = (3`=4; �=32).
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point, all three displacement components are reduced by more than 90% when controlling
voltages are fed back to the patches.

To illustrate the spatial attenuation due to the feedback of voltages to the patches, root
mean square (rms) plots of the uncontrolled and controlled trajectories along the axial line
L1 and circumferential line L2 (see Figure 2) are plotted in Figure 4 and 5, respectively.
For the open loop case, these plots illustrate a standing wave in all three components of the
displacement (the slight asymmetry in the axial plots is due to the longitudinal input q̂x).
The �gures also demonstrate signi�cant reductions in all three displacement levels, even in
regions not covered by patches. This further illustrates the e�ectiveness through which the
model-based control law can be used to attenuate shell vibrations.
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Figure 3. Uncontrolled and controlled shell displacements at the point p1 = (3`=4; �=32);
(a) longitudinal u, (b) circumferential v, (c) transverse w displacements; (uncontrolled),

(controlled).
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Figure 4. Root mean square (rms) displacements along the axial line L1; (uncontrolled),
(controlled).
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Figure 5. Root mean square (rms) displacements along the circumferential line L2;
(uncontrolled), (controlled).
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Dimensions Parameters

h = :00127m � = 2700 kg=m3

R = :4m E = 7:1� 1010N=m2

Shell ` = 1m cD = 1:47 � 105Nms

� = :33

� = 58:97Ns=m2

hpe = :0001778m �pe = 7600 kg=m3

Epe = 6:3 � 1010N=m2

Patches Centers (x; �): (:25; 0); (:5; 0); (:75; 0) cDpe
= 1:7� 105Nms

(:25; �); (:5; �); (:75; �) �pe = :31

Dimensions: x : 0:1 cm, � : �=3 d31 = 190 � 10�12m=V

Table 1. Dimensions and physical parameters for the shell and patches.

6 Conclusions

A model-based LQR method for controlling shell vibrations has been presented here. While
developed in the context of a modi�ed Donnell-Mushtari cylindrical shell model, the method
is quite general and can be directly extended to other models and geometries. Under the
assumption of strong or Kelvin-Voigt damping (a reasonable and typical assumption for many
shell materials), model well-posedness and convergence of control gains is obtained using
analytic semigroup theory combined with LQR results for unbounded input operators.

The Galerkin method used to approximate the system dynamics utilizes bases constructed
from tensored Fourier polynomials and modi�ed cubic splines. As discussed in [7], care must
be taken when developing methods for approximating shell dynamics so as to avoid shear or
membrane locking. One manifestation of locking is the existence of model dynamics which
are incorrectly approximated by the numerical method. The use of a numerical method which
exhibits locking can lead to a loss of control authority and potential controller destabilization
if the approximations are su�ciently inaccurate. Further details regarding issues concerning
the approximation of shell dynamics and convergence properties of the numerical method can
be found in [7].

The numerical example demonstrates the e�ectiveness of the model-based control method
for attenuating all three components of the shell displacement in the presence of both transient
and steady state dynamics. Furthermore, by modeling the global shell dynamics and patch
interactions through coupled PDE and constructing the control law in terms of these PDE,
signi�cant reductions in displacement levels throughout the shell are obtained, even in regions
devoid of patches. Numerical implementation of the LQR method in this manner provides a
�rst step toward the development of model-based state estimators and compensators which
can be experimentally implemented in shell applications.
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